

Coupled Data Assimilation & Prediction Systems at the GMAO-NASA

GMAO, NASA-GSFC (presented by Santha Akella)

Outline

- Brief overview of MERRA-2
- Coupled components in MERRA-2

• Integrated Earth System Analysis (IESA). Full coupling:

MERRA-2: System

GEOS-ADAS-5.12.4: GEOS-AGCM (0.5°x0.625° L72), GSI (3D-Var)

Key updates (model, analysis, and observations):

- Cubed-sphere dynamics
- Updated physics: convection, re-evap of rain, snow sublimation
- New moisture control variable
- Bias correction for aircraft temperature observations
- More observations: MetOp-B/SNPP, GPSRO, AuraOMI/MLS
- Constraints on dry mass and globally integrated water for improved hydrology
- Aerosol assimilation, radiatively coupled to AGCM (direct effects)
- Observation-corrected precipitation for surface forcing and aerosol deposition over ocean
- Improved glacier model and sea-ice albedos
- Daily, ¹/₄°- ocean boundary conditions (SST, Sea Ice Concen.)

MERRA-2: Input, Output

Assimilated Observations

Data Delivery

- 1980- present, run with 2-3 week latency
- Hourly 2D fields (surface)
- 3- and 6-hourly 3D fields

(SI	5- ₋								
Observation Count (millions)	4-	N	IERI	RA					
	3-								
	2-								
	1-								
	0-	1985	199	0	1995	2000	2005	2010	
		onven ircraft	tional		Sfc v Prec		GPS Her	SRO ritage I	R

AMV

GOES SNDR

Daily Products	~25 GB/ day	9.1 TB/ year
Monthly	~34 GB/	408 GB/
Products	day	year

MERRA-2: Coupled components

Aerosol Assimilation

MERRA-2 Aerosol Analysis 10 July 2013 1200UTC

- Black and organic carbon, dust, sea salt, sulfates
- GOCART mixing, chemistry and deposition
- Actively assimilated AOD from AVHRR, MODIS, MISR, AERONET
- Aerosols radiatively coupled with atmospheric model dynamics

East Asia/Adjacent Pacific AOD

MERRA-2: Coupled components

Ozone Assimilation

South Pole Total Column Ozone

Partial/total column	SBUV	1980- 2004
Total column	OMI	2004
Profiles	MLS	2004

2005

Year

2000

MERRA-2 better agrees with sonde data 2005 onwards when EOS Aura MLS and OMI observations are assimilated

	1991-2004	2005-2014
Sondes-Analysis difference	14.03 DU -6.72 DU	26.56 DU -6.77
Std. Dev of the sonde-analysis differences	30.19 DU 28.23 DU	36.00 11.10

1995

2015

2010

MERRA-2: "loosely coupled"

Precipitation Correction

- to match gauge and/or satellite obs- it is *incident* at surface
- improves land hydrology and positively feeds back to atmospheric fields

Comparison w.r.t. **SCAN** in-situ observations (in US, 2002-2014)

Soil Moisture (near-surface & root-zone)

MERRA-Land:

- land only replay of MERRA
- included precip corrections

IESA: Full Coupling

Integrated Earth System Analysis of currently uncoupled assimilation systems (driven by MERRA-2):

- 1. Chemistry (CO, CO₂), Carbon cycle
- 2. Land (surface fields), soil and snow states
- 3. Ocean (physical) state
- ♦ Ocean bio-geo-chemistry (relies on items 1 and 3)
 - More on this.. if time permits

IESA: Chemistry (CO, CO₂, ...)

Plan: fully coupled <u>Carbon DA</u> & <u>Atmospheric DAS</u>

Priorities:

- Assimilate column-averaged CO₂ retrievals from GOSAT, OCO-2
- **Direct radiance assimilation** of OCO-2 observations

Issues:

- Retrieval: latency (24- 48 hrs) and biases; but regional data
- Underestimation of the summer drawdown by boreal forests- well known deficiency of land carbon models.

XCO₂ (ppmv) Aug 4, 2010- 12 UTC

Assimilation of GOSAT CO₂ reduces bias over N Hem

IESA: Land Surface

Plan: weakly coupled Land DA & Atmospheric DAS

Priorities:

Near-surface soil moisture and snow cover fraction

Issues:

- Calibration and validation of heterogeneous surface with sparse obs
- Reconcile differences between model and observed variables

IESA: Ocean

Plan: weakly coupled Ocean DA & Atmospheric DAS

- Ocean surface T = Ocean T (z=1) + Ocean Ana Increment
- ✓ Skin SST (T_s) = Ocean surface T + Diurnal warming Cool skin
 - + Atmos Ana Increment (direct radiance assimilation)

Closing Remarks

- Ongoing work toward IESA
 - Chemistry
 - Land
 - Ocean
 - Ocean Bio-Geo-Chem

As <u>predictions improve</u>- across interfaces, analyses (sub-) components are modularly integrated (**ESMF**) into the GMAO systems:

- Weather forecasts
- S2S,
- Reanalysis (MERRA-3, ...)

BACKUP SLIDES

MERRA-2-Ocean (coupled AO-GCM replayed to MERRA-2 atmospheric analysis)

MERRA-2-Ocean: Plan

AO-GCM configuration

	MERRA-2-Ocean	MERRA-Ocean
Atmosphere	MERRA-2 replay	MERRA replay
Ocean	MOM5 (or 6?)	MOM4-p1
Ocean res	0.25° tripolar; L50	0.5° tripolar; L40
Sea-Ice	LANL CICE 4.1 (or 5.1.2?)	LANL CICE 4.1
Run-off	Ice-sheets + Rivers	Rivers

Ocean Surface Currents

Eddy Permitting

MERRA-2-Ocean: Plan

Assimilation of observations

	MERRA-2-Ocean	MERRA-Ocean
SST	OSTIA (or Reynolds? or L2)	Reynolds
Sea-Ice Concentration	NSIDC (or Reynolds/SAF?)	NSIDC
Sea Level Anomaly (or Abs. Dyn. Topo.?)	AVISO	AVISO
Sea Surface Salinity	Pre-processed Aquarius?	-None-

In-situ

T&S (CTD, TAO, PIRATA, RAMA, ARGO; XBT-T)

MERRA-2-Ocean: Issues

• Effectively constrain meso-scale features

Need to assimilate along track altimeter SSH (ADT)

• **Gridded SST** (Optimal-interpolation products)

0.05° OSTIA SST (1 Jan, 2014)

0.1° AXIOM-1 SST (1 Jan, 2014)

Need to assimilate along track SST

MERRA-2-Ocean: Issues

- Sea Ice Concentration: assimilated (NSIDC, NASA Team-2 product)
- Sea Ice Thickness distribution: unconstrained

Sea Ice Thickness (m) (Aug, 2015 Monthly Mean)

Thickness significantly differs from climatology (PIOMAS):

- Assimilate CRYOSAT-2 freeboard?
- Calibrate CICE parameters? 17

EXTRA

IESA: Ocean bio-geo-chemistry

Existing Product:

- Ocean pCO₂ and CO₂ fluxes from the NOBM-Poseidon
- Publicly available at carbon.nasa.gov for 2003-2012
- Current pCO₂ and CO₂ fluxes show agreement with in situ data
- Different reanalysis forcing data produce flux estimates within 20%

Development:

pCO₂ and CO₂ fluxes from the NOBM using Modular Ocean Model (both offline using Carbon Tracker data and online using GEOS-5)

Ship based estimate Of CO_{2 fluxes} (Takahashi et al., 2006)

